Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Transl Med ; 22(1): 370, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637842

ABSTRACT

JAK-STAT signalling pathway inhibitors have emerged as promising therapeutic agents for the treatment of hair loss. Among different JAK isoforms, JAK3 has become an ideal target for drug discovery because it only regulates a narrow spectrum of γc cytokines. Here, we report the discovery of MJ04, a novel and highly selective 3-pyrimidinylazaindole based JAK3 inhibitor, as a potential hair growth promoter with an IC50 of 2.03 nM. During in vivo efficacy assays, topical application of MJ04 on DHT-challenged AGA and athymic nude mice resulted in early onset of hair regrowth. Furthermore, MJ04 significantly promoted the growth of human hair follicles under ex-vivo conditions. MJ04 exhibited a reasonably good pharmacokinetic profile and demonstrated a favourable safety profile under in vivo and in vitro conditions. Taken together, we report MJ04 as a highly potent and selective JAK3 inhibitor that exhibits overall properties suitable for topical drug development and advancement to human clinical trials.


Subject(s)
Drug Development , Hair , Mice , Animals , Humans , Mice, Nude , Drug Discovery , Janus Kinase 3
2.
J Biomol Struct Dyn ; : 1-14, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38423128

ABSTRACT

In an endeavour to improve the anti-cancer activity of betulinic acid (BA), a series of C-30 derivatives were envisaged and synthesized with a novel synthetic approach. All the derivatives were evaluated for cytotoxic activity by MTT assay against six different human cancer cell lines: prostate (PC3), lung (A549), human hepatocellular carcinoma (HepG2), human leukemia (Molt-4), pancreatic (Panc-1) and breast (MCF-7). The data revealed that compound 16 was observed most promising cytotoxic agent with IC50 values of 7.43 µM, 9.1 µM, and 9.64 µM against A549, MCF-7, and PC3 cancer cell lines respectively. A further mechanistic study confirmed compound 16 showed significant cell death by arresting the cell cycle in the G1 phase and inducing apoptosis in A549 cells.Communicated by Ramaswamy H. Sarma.

3.
ACS Omega ; 8(34): 31112-31122, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37663462

ABSTRACT

The present study describes the isolation, identification, and quantification of biomarker compounds in plant extracts of Habenaria intermedia D. Don (Orchidaceae). The isolation of the compounds was carried out from H. intermedia D. Don by repeated column chromatography of petroleum ether and ethanol fractions of extract of tubers. These compounds were characterized by 1H and 13C NMR and mass spectral data. A new quantitative method was established by using high-performance liquid chromatography (HPLC)-PDA. As a result, seven compounds were isolated and characterized. This is the first report of isolation of these compounds from this plant species H. intermedia D.Don. Out of seven isolated compounds, five were used for the quantitative study. A reliable and suitable HPLC method was developed for the well-resolved chromatogram of compounds. The proposed method was applied successfully to the detection and quantification of compounds. This study also represents the immunomodulatory and anti-inflammasome biological studies of isolated natural products. Loroglossol (HBR-4) has been reported to possess immunomodulatory activity. The immunostimulating assay indicated that HBR-4 could significantly promote the cell proliferation, especially via IL-2, TNF-α, and IFN-γ secretion from spleen cells. These results suggested the potential utilization of HBR-4 as an attractive functional health supplement candidate for hypoimmunity population. Additionally, cyclophosphamide-induced immunosuppression was counteracted by treatment with HBR-4, revealing significant increase in hemagglutinating antibody responses and hemolytic antibody responses. The current work revealed the potential anti-inflammasome and immunomodulatory activities of H. intermedia D. Don compounds and validates the usage of this prominent Rasayna plant.

4.
Mol Divers ; 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37542020

ABSTRACT

Parkinson's disease is caused by the deficiency of striatal dopamine and the accumulation of aggregated α-synuclein in the substantia nigra pars compacta (SNpc). Neuroinflammation associated with oxidative stress is a key factor contributing to the death of dopaminergic neurons in SNpc and advancement of Parkinson's disease. Two molecular targets, i.e., nuclear factor kappa-light-chain-enhancer (NF-kB) and α-synuclein play a substantial role in neuroinflammation progression. Therefore, the compounds targeting these neuroinflammatory targets hold a great potential to combat Parkinson's disease. Thereby, in this study, molecular docking and Connectivity Map (CMap) based gene expression profiling was utilized to reposition the approved drugs as neuroprotective agents for Parkinson's disease. With in silico screening, two drugs namely theophylline and propylthiouracil were selected for anti-neuroinflammatory activity evaluation in in vivo models of chronic neuroinflammation. The neuroinflammatory effect of the identified compounds was confirmed by quantifying the expression of three important neuroinflammatory mediators, i.e. IL-6, TNF-alpha, and IL-1 beta on brain tissue using ELISA assay. The ELISA experiment demonstrated that both compounds significantly decreased the expression of neuroinflammatory mediators, highlighting the compounds' potential in neuroinflammation management. Furthermore, the drug and disease interaction network of the two identified drugs and diseases (neuroinflammation and Parkinson's disease) suggested that the two drugs might interact with various targets namely adenosine receptors, Poly [ADP-ribose] polymerase-1, myeloperoxidase (MPO) and thyroid peroxidase through multiple pathways associated with neuroinflammation and Parkinson's disease. Computational studies suggest that a particular drug may be effective in managing Parkinson's disease associated with neuroinflammation. However, further research is needed to confirm this in biological experiments.

5.
J Pept Sci ; 29(7): e3485, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36799200

ABSTRACT

The present work describes the synthesis, characterization, and wound healing properties of α/γ hybrid peptides: Boc-Phe-γ4 -Phe-Val-OMe (S1), Boc-D Phe-γ4 -Phe-Val-OMe (S2), Boc-Ala-γ4 -Phe-Val-OMe (S3), Boc-D Ala-γ4 -Phe-Val-OMe (S4), Boc-Leu-γ4 -Phe-Val-OMe (S5), and Boc-D Leu-γ4 -Phe-Val-OMe (S6). Peptides S1-S6 were screened against human keratinocytes (HaCaT) and RAW 264.7 cells. Among all, S1- and S2-treated cells exhibited high cell viability; S1 and S2 induced keratinocyte migration and inhibited the production of the cytokines IL-6 and TNF-α. In vivo results demonstrated that the hybrid peptides S1 and S2 accelerate wound healing in Wistar rats with 83% and 88% at 50 µg/ml, and 74% and 76% at 25 µg/ml, respectively.


Subject(s)
Peptides , Rats , Humans , Animals , Rats, Wistar , Peptides/chemistry
6.
ACS Appl Bio Mater ; 6(2): 733-744, 2023 02 20.
Article in English | MEDLINE | ID: mdl-36646666

ABSTRACT

A redox-responsive macromolecular prodrug of tacrolimus, HA-ss-Tac, was constructed by conjugation of tacrolimus (TAC, FK506) through its succinate ester to cystamine-modified hyaluronic acid (HA-Cys), and its physicochemical properties and immunosuppressive activity were studied. The synthesized HA-ss-TAC was determined to contain 8% of chemically loaded TAC with significantly enhanced water solubility. The release study showed a sustained release of drug through slow degradation of linker-drug bonds. In vitro inhibition of proliferation of T- and B-lymphocytes was almost comparable to that of TAC, implying that the biologically active compound could be released from the conjugate. The polymeric prodrug lacks obvious cytotoxicity on Raw 264.7 macrophages and significantly suppressed the production of inflammatory cytokines IL-2 and IL-1ß by LPS-activated cells. Additionally, the cellular uptake study of the FITC-labeled conjugate confirmed the HA receptor-mediated internalization of the conjugate into targeted cells, thus avoiding systemic side effects. Taken together, the HA-ss-TAC prodrug could be an optimal prodrug for intravenous administration based on this preliminary data and can be expected to have improved therapeutic efficacy.


Subject(s)
Prodrugs , Tacrolimus , Tacrolimus/pharmacology , Prodrugs/pharmacology , Hyaluronic Acid/pharmacology , Hyaluronic Acid/chemistry , Oxidation-Reduction , Solubility
7.
Opt Lett ; 47(17): 4431-4434, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36048671

ABSTRACT

In this Letter, we propose and experimentally validate a sparse deep learning method (SDLM) for terahertz indoor wireless-over-fiber by transmitting a 16-quadrature amplitude modulation (QAM) orthogonal frequency-division multiplexing (OFDM) signal over a 15-km single-mode fiber (SMF) and a wireless link distance of 60 cm at 135 GHz through a cost-effective intensity-modulated direct detection (IM-DD) communications system. The proposed SDLM imposes the L1-regularized mechanism on the cost function, which not only improves performance but also reduces complexity when compared with traditional Volterra nonlinear equalizer (VNLE), sparse VNLE, and conventional DLM. Our experimental findings show that the proposed SDLM provides viable options for successfully mitigating nonlinear distortions and outperforms conventional VNLE, conventional DLM, and SVNLE with a 76%, 72%, and 61% complexity reduction, respectively, for 8-QAM without losing signal integrity.

9.
ACS Appl Bio Mater ; 5(6): 2726-2740, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35594572

ABSTRACT

Chronic wound healing is a major threat all over the world. There are currently a plethora of biomaterials-based wound dressings available for wound healing applications. In this study, a dual protein-based (silk fibroin and sericin) nanofibrous scaffold from a natural source (B.mori silkworm cocoons) with antibacterial and antioxidative properties for wound healing was investigated. An electrospun layer-by-layer silk protein-based nanofibrous scaffold was fabricated with a top layer of hydrophobic silk fibroin protein blended with polyvinyl alcohol (PVA), a middle layer of waste protein silk sericin loaded with silver(I) sulfadiazine as an antibacterial agent, and a bottom layer using silk fibroin blended with polycaprolactone (PCL). The trilayered nanofibrous scaffold with a smooth and bead-free morphology demonstrated excellent wettability, slow in vitro degradation, controlled drug release, and potent antibacterial and antioxidant properties. In vitro, the scaffold also demonstrated excellent hemocompatibility and biocompatibility. Furthermore, in vivo wound contraction, histological, and micro-CT investigations show complete wound healing and the formation of new skin tissue in a male Balb/c mouse model treated with the scaffold. The antioxidant properties of the sericin protein and SSD-based triple-layered nanofibrous scaffold protect the wound from bacterial infection and improve wound healing in a mouse model. The current study develops a dual protein-based nanofibrous scaffold with antibacterial and antioxidant properties as a promising wound dressing material.


Subject(s)
Fibroins , Nanofibers , Sericins , Animals , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Fibroins/pharmacology , Male , Mice , Nanofibers/chemistry , Sericins/pharmacology , Silk/chemistry , Wound Healing
11.
Opt Lett ; 46(9): 1999-2002, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33929403

ABSTRACT

In this Letter, we propose and experimentally demonstrate a novel, to the best of our knowledge, sparse deep neural network-based nonlinear equalizer (SDNN-NLE). By identifying only the significant weight coefficients, our approach remarkably reduces the computational complexity, while still upholding the desired transmission accuracy. The insignificant weights are pruned in two phases: identifying the significance of each weight by pre-training the fully connected DNN-NLE with an adaptive L2-regularization and then pruning those insignificant ones away with a pre-defined sparsity. An experimental demonstration is conducted on a 112 Gbps PAM4 link over 40 km standard single-mode fiber with a 25 GHz externally modulated laser in O-band. Our experimental results illustrate that, for the 112 Gbps PAM4 signal at a received optical power of -5dBm over 40 km, the proposed SDNN-NLE exhibits promising solutions to effectively mitigate nonlinear distortions and outperforms a conventional fully connected Volterra equalizer (VE), conventional fully connected DNN-NLE, and sparse VE by providing 71%, 63%, and 41% complexity reduction, respectively, without degrading the system performance.

12.
Transl Oncol ; 14(1): 100879, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33045679

ABSTRACT

The last decade has witnessed a substantial expansion in the field of microRNA (miRNA) biology, providing crucial insights into the role of miRNAs in disease pathology, predominantly in cancer progression and its metastatic spread. The discovery of tumor-suppressing miRNAs represents a potential approach for developing novel therapeutics. In this context, through miRNA microarray analysis, we examined the consequences of Prostate apoptosis response-4 (Par-4), a well-established tumor-suppressor, stimulation on expression of different miRNAs in Panc-1 cells. The results strikingly indicated elevated miR-200c levels in these cells upon Par-4 overexpression. Intriguingly, the Reverse Phase Protein Array (RPPA) analysis revealed differentially expressed proteins (DEPs), which overlap between miR200c- and Par-4-transfected cells, highlighting the cross-talks between these pathways. Notably, Phospho-p44/42 MAPK; Bim; Bcl-xL; Rb Phospho-Ser807, Ser811; Akt Phospho-Ser473; Smad1/5 Phospho-Ser463/Ser465 and Zyxin scored the most significant DEPs among the two data sets. Furthermore, the GFP-Par-4-transfected cells depicted an impeded expression of critical mesenchymal markers viz. TGF-ß1, TGF-ß2, ZEB-1, and Twist-1, concomitant with augmented miR-200c and E-cadherin levels. Strikingly, while Par-4 overexpression halted ZEB-1 at the transcriptional level; contrarily, silencing of endogenous Par-4 by siRNA robustly augmented the Epithelial-mesenchymal transition (EMT) markers, along with declining miR-200c levels. The pharmacological Par-4-inducer, NGD16, triggered Par-4 expression which corresponded with increased miR-200c resulting in the ZEB-1 downregulation. Noteworthily, tumor samples obtained from the syngenic mouse pancreatic cancer model revealed elevated miR-200c levels in the NGD16-treated mice that positively correlated with the Par-4 and E-cadherin levels in vivo; while a negative correlation was evident with ZEB-1 and Vimentin.

13.
Int Immunopharmacol ; 91: 107264, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33340782

ABSTRACT

Bakuchiol (BAK) has been reported to have a diverse pharmacological property as an antibiotic, anti-cancer, anti-hypolipidemic, anti-inflammatory and anti-convulsant agent. This study aimed to elucidate the immunomodulation and anti-inflammatory mechanism of bakuchiol using lipopolysaccharide stimulated RAW 264.7 macrophages and various animal models. The present study has shown that BAK significantly suppressed the pro-inflammatory cytokine expression in a dose-dependent manner and its oral administration significantly decreased delayed hypersensitivity responses as compared to control group. The assessment of immunomodulatory activity was carried out by the testing Hemagglutinating antibody (HA) titer, delayed type hypersensitivity (DTH) responses and phagocytic index by carbon clearance test. On the other hand, it showed significant decrease in circulating antibody titer and carbon clearance assay in a concentration-dependent manner. BAK has significantly potentiated the cellular immunity as well as humoral immunity by facilitating the footpad thickness responses in sheep RBCs in sensitized mice by significantly decreasing circulating antibody titer. Molecular studies revealed that BAK inhibited the activation of upstream mediator nuclear factor-κB by suppressing the phosphorylation of IκBα and p65. The responses were statistically significant as compared with the control (*p < 0.05, **p < 0.01).


Subject(s)
Anti-Inflammatory Agents/pharmacology , Graft Rejection/prevention & control , Hypersensitivity, Delayed/prevention & control , Immunosuppressive Agents/pharmacology , Inflammation/prevention & control , Macrophages/drug effects , Phenols/pharmacology , Animals , Cell Proliferation/drug effects , Cytokines/metabolism , Disease Models, Animal , Female , Graft Rejection/immunology , Graft Rejection/metabolism , Hypersensitivity, Delayed/immunology , Hypersensitivity, Delayed/metabolism , Immunity, Humoral/drug effects , Inflammation/chemically induced , Inflammation/immunology , Inflammation/metabolism , Inflammation Mediators/metabolism , Lipopolysaccharides , Lymphocyte Activation/drug effects , Macrophages/immunology , Macrophages/metabolism , Male , Mice , Mice, Inbred BALB C , NF-kappa B/metabolism , Phagocytosis/drug effects , Phosphorylation , RAW 264.7 Cells , Sheep , Signal Transduction , Skin Transplantation
14.
Opt Express ; 28(26): 38539-38552, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33379422

ABSTRACT

Volterra equalization (VE) presents substantial performance enhancement for high-speed optical signals but suffers from high computation complexity which limits its physical implementations. To address these limitations, we propose and experimentally demonstrate an elastic net regularization-based pruned Volterra equalization (ENPVE) to reduce the computation complexity while still maintain system performance. Our proposed scheme prunes redundant weight coefficients with a three-phase configuration. Firstly, we pre-train the VE with an adaptive EN-regularizer to identify significant weights. Next, we prune the insignificant weights away. Finally, we retrain the equalizer by fine-tuning the remaining weight coefficients. Our proposed ENPVE achieves superior performance with reduced computation complexity. Compared with conventional VE and L1 regularization-based Volterra equalizer (L1VE), our approach show a complexity reduction of 97.4% and 20.2%, respectively, for an O-band 80-Gbps PAM4 signal at a received optical power of -4 dBm after 40 km SMF transmission.

15.
Pancreatology ; 20(8): 1698-1710, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33039292

ABSTRACT

BACKGROUND: We recently reported prostate apoptosis response 4 (Par-4), a potential tumor suppressor protein restrains epithelial-mesenchymal transition (EMT) properties and promotes mesenchymal-epithelial transition (MET) in invasive cancer cells by repressing Twist-1 promoter activity. Here, we demonstrate that genetic as well as pharmacological modulation of Par-4 by NGD16 (a small molecule antimetastatic agent), limits EMT-induced chemoresistance in aggressive cancer cells by suppressing MDM-2, a downstream effector of Twist-1. METHODS: Matrigel invasion assay, gelatin degradation assay, cell scattering assay, MTT assay and colony formation assay were used to study the proliferation and migration abilities of invasive cancer cells. Immunoblotting, immunocytochemistry, and immunoprecipitation analysis were utilized for determining protein expression and protein-protein interaction. 4T1 aggressive mouse carcinoma model was employed to evaluate tumor growth and lung metastasis. RESULTS: Treatment of gemcitabine (nucleoside analogue anticancer agent) to pancreatic cancer (Panc-1, MiaPaca-2) and breast cancer (MDA-MB-231) cells amplified MDM-2 expression along with increase in EMT properties. Conversely, NGD16 boosted expression of tumor suppressor Par-4 and inhibited invasion and migration abilities of these cells. Moreover, induction of Par-4 effectively diminished MDM-2 along with pro-EMT markers, whereas, augmented the expression of epithelial markers. Furthermore, siRNA-mediated silencing of Par-4 divulged that NGD16 exerts its EMT inhibitory effects in a Par-4-dependent manner. Mechanistically, Par-4 activation provokes p53 by disrupting MDM-2-p53 interaction, which restored epithelial characteristics in cancer cells. Additionally, partial knockdown of MDM-2 through siRNA pronounced the anti-proliferative and anti-invasive effects of NGD16. Finally, NGD16 efficiently inhibited tumor growth and lung metastasis in mouse mammary carcinoma model without showing any undesirable effects. CONCLUSION: Our findings unveil Par-4 as a key therapeutic target and NGD16 (the pharmacological modulator of Par-4) are potential tools to suppress EMT and associated chemoresistance, which could be exploited clinically for the treatment of aggressive cancers.


Subject(s)
Breast Neoplasms , Pancreatic Neoplasms , Animals , Antineoplastic Agents , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cell Movement/drug effects , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Mice , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Receptors, Thrombin , Xenograft Model Antitumor Assays , Pancreatic Neoplasms
17.
J Environ Pathol Toxicol Oncol ; 28(3): 241-52, 2009.
Article in English | MEDLINE | ID: mdl-19888912

ABSTRACT

Arsenic trioxide (ATO/As2O3) is a promising drug for patients with a relapse of acute promyelocytic leukemia (APL); however, it frequently causes fatal arrhythmias. This study aims to investigate the various cellular and molecular mechanisms of adverse cardiac effects and the electrophysi-ological alterations caused by As2O3. We show the dose-dependent effect of ATO (0.2, 0.4, 0.8, 1.6, 3.2, 6.4 mum) on electrically driven cardiac action potential from the papillary muscle of the guinea pig. ATO causes a significant prolongation of action potential duration (APD) at various levels of repolarization, conduction delay, and increased triangulation, which is a novel marker for the proarrhythmic potential of a compound. Electrolyte imbalance (hypomagnesemia and hypokalemia) has also been found to cause amplification of ATO toxicity. Since ion channels play a very important role in the generation of cardiac action potential, we used various ion channel modulators such as choline, minoxidil, nifedipine, and verapamil to determine whether these agents could antagonize electrophysiological alterations caused by ATO. In in vivo experiments, ATO administration to animals for 10 days caused myocardial disorganization, interstitial edema and infiltration of inflammatory cells in the heart. Efforts were also made to screen the efficacy of vitamin C against ATO toxicity. ATO also caused a significant increase in the activity of certain clinically relevant enzymes for cardiac function and antioxidant mechanismssuch as serum creatine kinase isoenzyme, lactate dehydrogenase, glutathione peroxidase and reduced glutathione. In conclusion, ATO causes significant adverse cardiac effects and we suggest that cardiac function to be monitored during treatment with ATO. Our results also indicate that the status of the body's main electrolyte content (such as magnesium and potassium) is also an influencing factor on the magnitude of toxicity of arsenic trioxide.


Subject(s)
Antineoplastic Agents/toxicity , Heart/drug effects , Oxides/toxicity , Action Potentials/drug effects , Animals , Arsenic Trioxide , Arsenicals , Ascorbic Acid/pharmacology , Dose-Response Relationship, Drug , Drug Antagonism , Edema, Cardiac/chemically induced , Edema, Cardiac/physiopathology , Guinea Pigs , Heart/physiopathology , Leukemia, Promyelocytic, Acute/drug therapy , Male , Membrane Transport Modulators/pharmacology , Myocardium/metabolism , Myocardium/pathology , Oxidants/pharmacology , Oxidoreductases/metabolism , Vasodilator Agents/pharmacology
18.
Chem Biol Interact ; 180(3): 454-9, 2009 Aug 14.
Article in English | MEDLINE | ID: mdl-19433077

ABSTRACT

Haloperidol (HPL), well known antipsychotic drug can induce a marked QT prolongation and polymorphic arrhythmias. In this study we evaluated the influence of various induced risk factors such as electrolyte imbalance (hypokalemia and hypomagnesemia), gender difference, low pacing frequency, ischemia reperfusion insult on electrophysiological effect by haloperidol on electrically driven action potentials recorded from guinea pig papillary muscle. The doses of HPL ranging from 1 to 16 microM were used in this investigation. Action potentials (APs) were elicited electrically and recorded by classical microelectrode technique. HPL caused dose dependent prolongation of APD(90) the final stage of repolarization, increased triangulation, and led into dispersion of action potential, conduction delay and conduction block. Magnitude of the effect of haloperidol was amplified significantly by most of the risk factors. Among the various risk factors, electrolyte imbalance (hypokalemia, hypomagnesemia) caused more amplification of HPL effect. Most of the risk factors amplified prolongation of APD(90) by HPL. This effect is mainly due to the influence of these electrolytes and sex hormone on various ion channels involved in the repolarization phase of cardiac AP. This is the first report which provides an experimental evidence of amplification of electrophysiological effects of HPL in the presence of various risk factors.


Subject(s)
Action Potentials/drug effects , Antipsychotic Agents/toxicity , Haloperidol/toxicity , Animals , Arrhythmias, Cardiac/chemically induced , Electrolytes/metabolism , Female , Gonadal Steroid Hormones/metabolism , Guinea Pigs , Ion Channels/metabolism , Male , Microelectrodes , Papillary Muscles/drug effects , Risk Factors , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...